Bad semidefinite programs with short proofs, and the closedness of the linear image of the semidefinite cone

نویسنده

  • Gábor Pataki
چکیده

Semidefinite programs (SDPs) – some of the most useful and pervasive optimization problems of the last few decades – often behave pathologically: the optimal values of the primal and dual problems may differ and may not be attained. Such SDPs are theoretically interesting and often impossible to solve. Yet, the pathological SDPs in the literature look strikingly similar, and our recent paper [15] explained why: it characterized pathological semidefinite systems by certain excluded matrices, which are easy to spot in all published examples. Here we give short, and elementary proofs of these results using mostly techniques from elementary linear algebra. Our main tool is a standard (canonical) form of semidefinite systems, from which their pathological behavior is easy to verify. The standard form is constructed in a surprisingly simple manner, using mostly elementary row operations inherited from Gaussian elimination. As a byproduct, we prove that any linear map acting on symmetric matrices can be brought into a standard form; this standard form allows us to easily check whether the image of the semidefinite cone under the given linear map is closed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

An Easy Way to Obtain Strong Duality Results in Linear, Linear Semidefinite and Linear Semi-infinite Programming

In linear programming it is known that an appropriate nonhomogenious Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite programs under constraint qualifications. The proof includes optimality conditions. The same approach...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the “easy” proofs – as sufficiency of a certif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017